Abstract

Hydrogen can be blended with other surrogate fuels to avoid its hazard as a highly flammable and explosive gas. The effect of hydrogen addition on the ignition delay times of n-pentane, 3-pentanone, and 1-pentene was investigated by measuring the ignition delay times in a rapid compression machine. The experiments were performed at pressures of 10, 15, and 20 bar, equivalence ratios 0.5 and 1 and for temperatures ranging from 650 to 970 K. The molar ratios of hydrogen in the fuel mixtures were 0, 25 and 50%. The experimental data were simulated using recent models from literature, yielding good agreement. The overall observations conclude to a minor effect of hydrogen addition in the case of n-pentane and 3-pentanone, resulting in a decrease of the reactivity when the mole fraction of hydrogen increases. Hydrogen does however not impact the ignition delay times of 1-pentene significantly. Kinetic analysis is performed to shed light into the processes responsible for this phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.