Abstract
The structure stability of three α-helix bundle (the B domain of protein A) in an imidazolium-based ionic liquid (1-butyl-3-methylimidazolium chloride (BMIM-Cl)) is studied by molecular dynamics simulations. Consistent with previous experiments, the present simulation results show that the native structure of the protein is consistently stabilized in BMIM-Cl solutions with different concentrations. It is observed that BMIM(+) cations have a strong tendency to accumulate on protein surface whereas Cl(-) anions are expelled from protein. BMIM(+) cations cannot only have electrostatic interactions with the carbonyl groups on backbone and the carboxylate groups on negatively charged side chains, but also have hydrophobic interactions with the side chains of non-polar residues. In the meanwhile, the accumulation of large-size BMIM(+) cations on protein surface could remove the surrounding water molecules, reduce the hydrogen bonding from water to protein, and thus stabilize the backbone hydrogen bonds. In summary, the present study could improve our understanding of the molecular mechanism of the impact of water-miscible ionic liquid on protein structure.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.