Abstract
High-pressure turbine vanes and blades are subjected to a turbulent combustor flow affecting the heat transfer and boundary layer transition, hence, the temperature distribution. The accurate prediction of the temperature distribution is crucial for a reliable design and cooling implementation. Engine-representative measurements are hence mandatory for improving design tools. Recently, convective heat transfer measurements were conducted on a high-pressure turbine inlet guide vane (VKI LS89 airfoil) in the Isentropic Compression Tube (CT-2) facility at the von Karman Institute. This contribution focuses on the effect of high freestream turbulence generated by a new turbulence grid allowing a range of turbulence intensities in excess of 10% with representative length scales of the order of 1–2 cm. Three cases with varying turbulence levels are discussed in this paper. The different flow conditions are exit isentropic Mach numbers of 0.70–0.97, Reynolds numbers of 0.53 × 106 and 1.15 × 106 and a constant temperature ratio equal to 1.36. The heat transfer distributions along the vane suction side indicate a clear link between boundary layer transition and the stream-wise pressure gradients even at high levels of freestream turbulence intensity. Differences are put in evidence in the dynamics of the transition development. Future developments will focus also on the contribution of the other flow parameters under high turbulence. Heat transfer predictions from the boundary layer code TEXSTAN and Reynolds-Averaged Navier–Stokes code elsA (ensemble logiciel pour la simulation en Aérodynamique) are additionally compared to the experiments. Inherent difficulties associated with high turbulence modelling are clear from this early numerical work.
Highlights
The design and optimization of gas turbine components is heavily dependent on numerical tools that rely on available experimental databases for validation of their accuracy
The effects of turbulence intensity were analyzed through the heat transfer coefficient distribution along the suction side of the vane
A further variation in heat transfer would be due to a change in acceleration, separation bubbles, shocks or transition
Summary
The design and optimization of gas turbine components is heavily dependent on numerical tools that rely on available experimental databases for validation of their accuracy. The high complexity of laminar to turbulent boundary layer transition on a turbine airfoil surface is difficult to characterize due to the flow topology (wall bounded, unsteady, 3D) and non-linear interactions between flow variables [2]. In the framework of high-pressure turbines, the main transition mode occurring on the suction side of a vane or blade is bypass transition. This type of transition occurs due to the perturbed
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Turbomachinery, Propulsion and Power
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.