Abstract
This paper investigates the windage power losses generated by helical gears rotating in pure air based on experimental results and a computational fluid dynamic code. It is found that the simulated flow patterns are totally different from those calculated for spur gears and that both tooth face width and helix angle are influential. The windage losses derived from Dawson’s and Townsend’s formulae are critically assessed using computational fluid dynamic results thus highlighting the limits of a unique formulation for accurate windage loss prediction. Finally, an analytical approach is suggested which gives good results providing that the flow rates at the boundaries of the inter-tooth domains can be estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.