Abstract

The question of the influence of gyroscopic forces on the stability of steady-state motion of a holonomic mechanical system when the forces depend upon the velocities of only the position coordinates was answered by the Kelvin-Chetaev theorems [1] on the influence of gyroscopic and dissipative forces on the stability of equilibrium. However, if the gyroscopic forces depend as well on the velocities of the ignorable coordinates, then their influence on the stability of steady-state motions can, as the two problems in [2] show, prove to be entirely different from the influence of gyroscopic forces depending only on the velocities of the position coordinates. In this paper we investigate the influence of gyroscopic forces depending linearly on the velocities of the generalized coordinates, including the ignorable ones, on the stability of the steady-state motion of a holonomic conservative system. We prove that when the gyroscopic forces applied with respect to the ignorable coordinates are given as total time derivatives of certain functions of the position coordinates, the gyroscopic forces can both stabilize as well as destabilize the steady-state motion. Under certain conditions, this influence is also preserved for the action of dissipative forces depending on the velocities of only the position coordinates. In the case of action of dissipative forces depending also on the velocities of the ignorable coordinates, we have indicated the stability and instability conditions of the steady-state motion. Examples are considered. In conclusion, we discuss the conditions under which the application of gyroscopic forces to the system is equivalent to adding terms depending linearly on the generalized velocities to the Lagrange function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call