Abstract

A three-dimensional crystal plasticity finite element method model is developed to investigate the influence of the grain boundary (GB) misorientation on the equal-channel angular pressing deformation of aluminum bicrystals. Aluminum bicrystals with symmetric 〈112〉 tilt boundaries and misorientations of 9 deg (low angle), 15 deg (transitional), and 30 deg (high angle) have been designed to study the influence of GB misorientations on the deformed areas near GBs. The numerical results indicate that a high-angle grain boundary acts as a barrier in terms of Mises stress distribution, plastic slip, and lattice rotation, while the aluminum bicrystal with low-angle grain boundary still behaves similarly to a single crystal. An intermediate configuration is found for the aluminum bicrystal with transitional grain boundary. It is also found that the geometry of the GB after deformation depends on the initial orientation of the grain at the lower part of the billet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.