Abstract

Atomic-scale fracture processes are traditionally investigated in quasi-2D models of straight, infinite cracks. This approach neglects crack front curvature effects, which might be particularly important for nanoscale crack nuclei in semi-brittle materials. Here we use 3D atomistic simulations to study penny-shaped cracks in body-centered cubic metals. Our results show extensive crack tip plasticity initiated by deformation twinning and followed by emission of screw dislocations which cross-slip along the crack front. Together with the interactions of dislocations and/or twins that are nucleated at differently oriented parts of the crack, these processes determine the fracture behavior of highly curved nanoscale cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.