Abstract

Various bias-correction methods such as EXTRA, gradient tracking methods, and exact diffusion have been proposed recently to solve distributed deterministic optimization problems. These methods employ constant step-sizes and converge linearly to the exact solution under proper conditions. However, their performance under stochastic and adaptive settings is less explored. It is still unknown whether, when and why these bias-correction methods can outperform their traditional counterparts with noisy gradient and constant step-sizes. This work studies the performance of exact diffusion under the stochastic and adaptive setting, and provides conditions under which exact diffusion has superior steady-state mean-square deviation (MSD) performance than traditional algorithms without bias-correction. In particular, it is proven that this superiority is more evident over sparsely-connected network topologies such as lines, cycles, or grids. Conditions are also provided under which exact diffusion method can or degrade the performance of traditional methods. Simulations are provided to validate the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.