Abstract

Theoretical spectrograms are computed for whistlers propagating beyond the plasmapause. The electron distribution function was modelled as consisting of a hot plus a cold component and an appropriate dispersion equation is used. A collisionless (CL) model is used for the cold electron concentration and for the hot electron component the derived model assumes a bi-maxwellian distribution function with a loss cone at the equator. The results indicate limits on the use of the cold plasma approximation (c.p.a.) in the study of magnetospheric whistler propagation beyond the plasmapause and show that whistler analysis with the c.p.a. may under or overestimate the L value of the path deduced from ground spectrograms, depending on the anisotropy of the hot component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.