Abstract

We obtain geometric models for the infinite loop spaces of the motivic spectra $\mathrm{MGL}$, $\mathrm{MSL}$, and $\mathbf{1}$ over a field. They are motivically equivalent to $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{lci}(\mathbb{A}^\infty)^+$, $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{or}(\mathbb{A}^\infty)^+$, and $\mathbb{Z}\times \mathrm{Hilb}_\infty^\mathrm{fr}(\mathbb{A}^\infty)^+$, respectively, where $\mathrm{Hilb}_d^\mathrm{lci}(\mathbb{A}^n)$ (resp. $\mathrm{Hilb}_d^\mathrm{or}(\mathbb{A}^n)$, $\mathrm{Hilb}_d^\mathrm{fr}(\mathbb{A}^n)$) is the Hilbert scheme of lci points (resp. oriented points, framed points) of degree $d$ in $\mathbb{A}^n$, and $+$ is Quillen's plus construction. Moreover, we show that the plus construction is redundant in positive characteristic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.