Abstract

Belief rule based (BRB) system provides a generic inference framework for approximating complicated nonlinear causal relationships between antecedent inputs and output. It has been successfully applied to a wide range of areas, such as fault diagnosis, system identification and decision analysis. In this paper, we provide analytical and theoretical analyses on the inference and approximation properties of BRB systems. We first investigate the unified multi-model decomposition structure of BRB systems, under which the input space is partitioned into different local regions. Then we analyse the distributed approximation process of BRB systems. These analysis results unveil the underlying inference mechanisms that enable BRB systems to have superior approximation performances. Furthermore, by using the Stone–Weierstrass theorem, we constructively prove that BRB systems can approximate any continuous function on a compact set with arbitrary accuracy. This result provides a theoretical foundation for using and training BRB systems in practical applications. Finally, a numerical simulation study on the well-known benchmark nonlinear system identification problem of Box–Jenkins gas furnace is conducted to illustrate the validity of a BRB system and show its inference and approximation capability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.