Abstract
Abstract In this paper, we study the parameterized complexity of the induced matching problem in hamiltonian bipartite graphs and the inapproximability of the maximum induced matching problem in hamiltonian bipartite graphs. We show that, given a hamiltonian bipartite graph, the induced matching problem is W[1]-hard and cannot be solved in time n o ( k ) {n^{o(\sqrt{k})}} , where n is the number of vertices in the graph, unless the 3SAT problem can be solved in subexponential time. In addition, we show that unless NP = P {\operatorname{NP}=\operatorname{P}} , a maximum induced matching in a hamiltonian bipartite graph cannot be approximated within a ratio of n 1 / 4 - ϵ {n^{1/4-\epsilon}} , where n is the number of vertices in the graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.