Abstract

If no property of a system of many particles discriminates among the particles, they are said to be indistinguishable. This indistinguishability is equivalent to the requirement that the many-particle distribution function and all of the dynamic functions for the system be symmetric. The indistinguishability defined in terms of the discrete symmetry of many-particle functions cannot change in the continuous classical statistical limit in which the number density n and the reciprocal temperature β become small. Thus, microscopic particles like electrons must remain indistinguishable in the classical statistical limit although their behavior can be calculated as if they move following the classical laws of motion. In the classical mechanical limit in which quantum cells of volume (2πħ)3 are reduced to points in the phase space, the partition functionTr{exp(−βĤ) for N identical bosons (fermions) approaches (2πħ)−3N(N!) ∫ ... ∫ d3r1 d3p1 ... d3rN d3pNexp(−βH). The two factors, (2πħ)−3N and (N!)−1, which are often added in anad hoc manner in many books on statistical mechanics, are thus derived from the first principles. The criterion of the classical statistical approximation is that the thermal de Broglie wavelength be much shorter than the interparticle distance irrespective of any translation-invariant interparticle interaction. A new derivation of the Maxwell velocity distribution from Boltzmann's principle is given with the assumption of indistinguishable classical particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.