Abstract

We consider unbranched Willmore surfaces in Euclidean space that arise as inverted complete minimal surfaces with embedded planar ends. Several statements are proven about upper and lower bounds on the Morse Index—the number of linearly independent variational directions that locally decrease the Willmore energy. We in particular compute the Index of a Willmore sphere in the three‑space. This Index is $m-d$, where $m$ is the number of ends of the corresponding complete minimal surface and $d$ is the dimension of the span of the normals at the $m$-fold point. The dimension $d$ is either two or three. For $m=4$, we prove that $d=3$. In general, we show that there is a strong connection of the Morse Index to the number of logarithmically growing Jacobi fields on the corresponding minimal surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.