Abstract
AbstractThis paper presents some recent results on lower bounds for independence ratios of graphs of positive genus and shows that in a limiting sense these graphs have the same independence ratios as do planar graphs. This last result is obtained by an application of Menger's Theorem to show that every triangulation of a surface of positive genus has a short cycle which does not separate the graph and is non‐contractible on that surface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.