Abstract

Let G be an undirected graph with maximum degree at most 3 such that G does not contain any of the three graphs given in the paper as a subgraph. We prove that the independence number of G is at least n(G)/3+nt(G)/42, where n(G) is the number of vertices in G and nt(G) is the number of nontriangle vertices in G. This bound is tight as implied by the well-known tight lower bound of 5n(G)/14 on the independence number of triangle-free graphs of maximum degree at most 3.We show some algorithmic applications of the aforementioned combinatorial result to the area of parameterized complexity. We present a linear-time kernelization algorithm for the independent set problem on graphs with maximum degree at most 3 that computes a kernel of size at most 140k/47<3k, where k is the given parameter. This improves the known 3k upper bound on the kernel size for the problem, and implies a 140k/93 lower bound on the kernel size for the vertex cover problem on graphs with maximum degree at most 3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.