Abstract

To develop high deterioration resistance concrete for marine infrastructures, two types of nano TiO2 (NT) including anatase phase NT and silica surface-treated rutile phase NT were incorporated into concrete. The fabricated NT modified concrete was then put into the marine environment for 21 months in this study. The effects and mechanisms of two types of NT on the deterioration of concrete in the marine environment were investigated from three aspects, including seawater physical and biological as well as chemical actions on concrete with NT. Under the seawater physical action, the exposed degree of coarse sand particles on the surface of control concrete is greater than that of concrete with NT. Owing to the microorganism biodegradation property of NT, the elimination and inhibition rates of concrete with NT on microorganisms can reach up to 76.98% and 96.81%, respectively. In addition, the surface biofilm thickness of concrete can be reduced by 49.13% due to the inclusion of NT. In the aspect of seawater chemical action, NT can increase the pH value inside concrete by 0.81, increase the degree of polymerization of C–S–H gel, and improve the interfacial transition zone between cement paste and aggregate in concrete. Compared to anatase phase NT, silica surface-treated rutile phase NT is more effective in improving the deterioration resistance of concrete in the marine environment. It can be concluded that incorporating NT can inhibit the deterioration of concrete in the marine environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.