Abstract
In this paper we establish the incompressible limit for the compressible free-boundary Euler equations with surface tension in the case of a liquid. Compared to the case without surface tension treated recently, the presence of surface tension introduces severe new technical challenges, in that several boundary terms that automatically vanish when surface tension is absent now contribute at top order. Combined with the necessity of producing estimates uniform in the sound speed in order to pass to the limit, such difficulties imply that neither the techniques employed for the case without surface tension, nor estimates previously derived for a liquid with surface tension and fixed sound speed, are applicable here. In order to obtain our result, we devise a suitable weighted energy that takes into account the coupling of the fluid motion with the boundary geometry. Estimates are closed by exploiting the full non-linear structure of the Euler equations and invoking several geometric properties of the boundary in order to produce some remarkable cancellations. We stress that we do not assume the fluid to be irrotational.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.