Abstract

Locked nucleic acid (beta-D-LNA) monomers are conformationally restricted nucleotides bearing a methylene 2'-O, 4'-C linkage that have an unprecedented high affinity for matching DNA or RNA. In this study, we compared the in vitro and in vivo properties of four different LNAs, beta-D-amino LNA (amino-LNA), beta-D-thio LNA (thio-LNA), beta-D-LNA (LNA), and its stereoisomer alpha-L-LNA in an antisense oligonucleotide (ODN). A well-known antisense ODN design against H-Ras was modified at the 5'- and 3'-ends with the different LNA analogues (LNA-DNA-LNA gapmer design). The resulting gapmers were tested in cancer-cell cultures and in a nude-mouse model bearing prostate tumor xenografts. The efficacy in target knockdown, the biodistribution, and the ability to inhibit tumor growth were measured. All anti H-Ras ODNs were very efficient in H-Ras mRNA knockdown in vitro, reaching maximum effect at concentrations below 5 nM. Moreover, the anti-H-Ras ODN containing alpha-L-LNA had clearly the highest efficacy in H-Ras knockdown. All LNA types displayed a great stability in serum. ODNs containing amino-LNA showed an increased uptake by heart, liver, and lungs as compared to the other LNA types. Both alpha-L-LNA and LNA gapmer ODNs had a high efficacy of tumor-growth inhibition and were nontoxic at the tested dosages. Remarkably, in vivo tumor-growth inhibition could be observed at dosages as low as 0.5 mg kg(-1) per day. These results indicate that alpha-L-LNA is a very promising member of the family of LNA analogues in antisense applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.