Abstract

Photocatalysts as a semiconductor material are widely used in the field of water and environment cleaning applications as it equips with favorite features such as chemical and physical stability, easy availability, inexpensive, and non-toxic in nature. Additionally, photocatalysts can convert the light energy of the irradiation into the chemical energy of the electron-hole pairs. Most commonly used TiO2 can function as the efficient photocatalysts in the presence of light. However it is a material which majorly requires UV light for its activation, and it is not practically being useful. In this aspect, the proposed study demonstrated that with a combination of SnFe2O4 nanoparticles with magnetic artificial cilia, a highly efficient catalytic activity can be achieved under the visible light due to the rapid and uniform mixing within the microfluidic device with least energy budget. To identify the optimal advanced oxidation process using the selected photocatalyst running with the microfluidics, a micro-particle image velocimetry analysis was carried out through three modes of artificial cilia rotation. The study also determined the evolution curves of the degradation rate with respect to time for all of three modes of cilia rotation, and a superior performance was achieved with a maximum degradation rate of 81.7% in 60 min using the presented design concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.