Abstract

Incorporation of thermally reduced graphene oxide (RG-O) into the metal oxide semiconductor BiVO4 improves its photoactivity by about three times for sulfite oxidation. The enhancement of photoactivity is attributed to reduced electron–hole recombination of BiVO4 using the RG-O as a conductive matrix in the composite photocatalyst. Photoelectrochemical behavior of the BiVO4 and RG-O/BiVO4 composite electrodes were simulated using finite element analysis to obtain the carrier mobility and its lifetime in the photoelectrodes. In contrast with sulfite oxidation, the improvement of photocurrent for water oxidation of RG-O/BiVO4 composite electrode was not significant because of the slower kinetics for water oxidation. To address the kinetic limitations, platinum (Pt) as an effective electrocatalyst was photodeposited on the RG-O/BiVO4 electrode. Addition of the Pt significantly improved water oxidation photocurrent of the Pt/RG-O/BiVO4 electrode. RG-O/W–Mo-doped BiVO4 composite electrodes were also prepared to investigate a further enhancement of photoactivity of W–Mo-doped BiVO4. The behavior obtained from RG-O/W–Mo-BiVO4 and RG-O/BiVO4 electrodes provides a valuable insight into the role of RG-O as a conducting additive and the role of W and Mo as dopants into BiVO4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.