Abstract

The creep and fracture properties of high-purity Ni-20 pct Cr and Ni-20 pct Cr-0.11 pct Zr alloys are compared at 1073 K in vacuum. The Ni-20 pct Cr alloy cavitates at the grain boundaries and fractures intergranularly after strains of typically 20 pct. The observed cavity growth rates are in keeping with those predicted. Alloying with zirconium substantially increases the creep strength and ductility. Creep rupture associated with dynamic recrystallization occurs, and voids are observed only in heavily necked parts of the samples. In addition to Ni5Zr and ZrO2 inclusions, a Zr4C2S2 carbo-sulfide was identified. Thus, the sulfur-gettering effect of zirconium even at very low residual sulfur levels (20 wt ppm) was confirmed. The zirconium-induced increase in the creep strength is discussed, and the inhibition of creep cavitation by zirconium is examined within the framework of thermal cavity nucleation. Lowering of the grain boundary diffusivity and the grain boundary free energy as well as dynamic recrystallization are likely to reduce cavity nucleation and growth rates in Ni-Cr-Zr and will thus increase its ductility. Finally, the results are used to illustrate the critical importance of minor alloying additions in constructing and using fracture mechanism maps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.