Abstract

Standard complementary-metal-oxide semi-conductor (CMOS) process for the advantages in batch production, low cost, and mostly importantly, scalability has been applied to thermoelectric generator (TEG) designs, where silicon materials are preferable for monolithic circuit integration. In this work, the BiCMOS process is found to be a perfect platform for TEG designs to achieve higher performance by the polysilicon-germanium thin film layer. Simulations of the TEG designs by 0.35 μm SiGe 3P3M and 0.18 μm SiGe 3P6M BiCMOS processes (TSMC) show that the power factors are respectively 0.242 and 0.125 μW/cm2 K2, and the voltage factors are 10.04 and 25.91 V/cm2 K. Both are shown to be superior to all micro TEGs by semiconductor process in the open literature. Experimental verifications confirm the simulation results and validate the effectiveness of TEG designs by the polysilicon-germanium thin film layer in BiCMOS process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.