Abstract

The specific optical rotation of (S)-fluoro-oxirane in gas phase and solution is predicted using time-dependent density functional theory (B3LYP functional) and coupled cluster linear response theory. Upon vibrational averaging, the coupled cluster singles and doubles model predicts the gas phase specific optical rotation to be 8.1 degrees (dm g/cm(3))(-1) at 355 nm at room temperature. This is an order of magnitude smaller than the B3LYP result of 68.4 degrees (dm g/cm(3))(-1). The main source of this discrepancy is the electronic contribution at the equilibrium geometry. The effects of cyclohexane and acetonitrile solvents are calculated for both the electronic and vibrational contributions with the B3LYP functional. The specific optical rotation is estimated to change significantly depending on the polarity of the solvent, increasing in cyclohexane and decreasing in acetonitrile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call