Abstract
Understanding the mechanisms of clustering in colloids, nanoparticles, and proteins is of significant interest in material science and both chemical and pharmaceutical industries. Recently, using an integral equation theory formalism, Bomont et al. [J. Chem. Phys. 132, 184508 (2010)] studied theoretically the temperature dependence, at a fixed density, of the cluster formation in systems where particles interact with a hard-core double Yukawa potential composed of a short-range attraction and a long-range repulsion. In this paper, we provide evidence that the low-q peak in the static structure factor, frequently associated with the formation of clusters, is a common behavior in systems with competing interactions. In particular, we demonstrate that, based on a thermodynamic self-consistency criterion, accurate structural functions are obtained for different choices of closure relations. Moreover, we explore the dependence of the low-q peak on the particle number density, temperature, and potential parameters. Our findings indicate that enforcing thermodynamic self-consistency is the key factor to calculate both thermodynamic properties and static structure factors, including the low-q behavior, for colloidal dispersions with both attractive and repulsive interactions. Additionally, a simple analysis of the mean number of neighboring particles provides a qualitative description of some of the cluster features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.