Abstract

5G mmWave technology promises capacities 10 to 100 times that of 4G. However, mmWave links are very sensitive to having direct line of sight between sender and receiver, with dramatically fluctuating capacities due to transient blocking and shadow fading, which can substantially degrade TCP performance. TCP-splitting proxies (SPEPs) are often used to improve TCP performance over wireless links. We investigate current operator SPEPs (used in 4G LTE networks) under mmWave-like dynamics using the MONROE1 testbed. We introduce a mmWave emulation model for an urban canyon scenario, and use it to evaluate how current operational SPEPs impact the performance. Our results from experiments including four operators and three countries, indicate that SPEPs will be even more important for 5G mmWave than they are in LTE. Current 4G SPEPs provide significant, though not optimal, benefits under mmWave-like conditions, allowing them to be utilized as the network transitions to 5G technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.