Abstract

The psychological refractory period (PRP) paradigm is a dominant research tool in the literature on dual-task performance. In this paradigm a first and second component task (i.e., Task 1 and Task 2) are presented with variable stimulus onset asynchronies (SOAs) and priority to perform Task 1. The main indicator of dual-task impairment in PRP situations is an increasing Task 2-RT with decreasing SOAs. This impairment is typically explained with some task components being processed strictly sequentially in the context of the prominent central bottleneck theory. This assumption could implicitly suggest that processes of Task 1 are unaffected by Task 2 and bottleneck processing, i.e., decreasing SOAs do not increase reaction times (RTs) and error rates of the first task. The aim of the present review is to assess whether PRP dual-task studies included both RT and error data presentations and statistical analyses and whether studies including both data types (i.e., RTs and error rates) show data consistent with this assumption (i.e., decreasing SOAs and unaffected RTs and/or error rates in Task 1). This review demonstrates that, in contrast to RT presentations and analyses, error data is underrepresented in a substantial number of studies. Furthermore, a substantial number of studies with RT and error data showed a statistically significant impairment of Task 1 performance with decreasing SOA. Thus, these studies produced data that is not primarily consistent with the strong assumption that processes of Task 1 are unaffected by Task 2 and bottleneck processing in the context of PRP dual-task situations; this calls for a more careful report and analysis of Task 1 performance in PRP studies and for a more careful consideration of theories proposing additions to the bottleneck assumption, which are sufficiently general to explain Task 1 and Task 2 effects.

Highlights

  • When people execute two simultaneous or systematically delayed distinct tasks under dual-task conditions, performance in these tasks is often impaired (e.g., Kahneman, 1973; Wickens, 1980; Pashler, 2000, and many more)

  • We review whether Task 1 performance is independent of stimulus onset asynchronies (SOAs) using the perspective of the second aim: that is, reaction times (RTs) and error rates are constant across SOAs

  • Note that we exclusively review SOA main effects on RTs and/or error rates because we focus on robust effects

Read more

Summary

Introduction

When people execute two simultaneous or systematically delayed distinct tasks under dual-task conditions, performance in these tasks is often impaired (e.g., Kahneman, 1973; Wickens, 1980; Pashler, 2000, and many more). One of the most prominent dual-task situations is of the psychological refractory period (PRP) type (Telford, 1931; Vince, 1949; Welford, 1952; Pashler, 1984, 1994; Pashler and Johnston, 1989, 1998; Osman and Moore, 1993; Schubert, 1999; Schubert et al, 2008) In this dual-task situation, two component tasks are presented in close succession with various time intervals between the onsets of a first and second task stimulus (i.e., variable stimulus onset asynchronies, SOAs) and participants are given fixedpriority instructions on the execution of the first task (Task 1). This performance decrease indicates dual-task costs in the context of PRP dual tasks (i.e., the PRP effect)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call