Abstract
Abstract Conversational recommender systems have been shown capable of allowing users to navigate even complex and unknown application domains effectively. However, optimizing preference elicitation remains a largely unsolved problem. In this paper we introduce SPEECHREC, a speech-enabled, knowledge-based recommender system, that engages the user in a natural-language dialog, identifying not only purely factual constraints from the users’ input, but also integrating nuanced lexical qualifiers and paralinguistic information into the recommendation strategy. In order to assess the viability of this concept, we present the results of an empirical study where we compare SPEECHREC to a traditional knowledge-based recommender system and show how incorporating more granular user preferences in the recommendation strategy can increase recommendation quality, while reducing median session length by 46 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.