Abstract

Human body models are created in a specific posture and often repositioned and analyzed without retaining stresses that result from repositioning. For example, repositioning a human neck model within the physiological range of motion to a head-turned posture prior to an impact results in initial stresses within the tissues distracted from their neutral position. The aim of this study was to investigate the effect of repositioning on the subsequent kinetics, kinematics, and failure modes, of a lower cervical spine motion segment, to support future research at the full neck level. Repositioning was investigated for 3 modes (tension, flexion, and extension) and 3 load cases. The model was repositioned and loaded to failure in one continuous load history (case 1), or repositioned then restarted with retained stresses and loaded to failure (case 2). In case 3, the model was repositioned and then restarted in a stress-free state, representing current repositioning methods. Not retaining the repositioning stresses and strains resulted in different kinetics, kinematics, or failure modes, depending on the mode of loading. For the motion segment model, the differences were associated with the intervertebral disc fiber reorientation and load distribution, because the disc underwent the largest deformation during repositioning. This study demonstrated that repositioning led to altered response and tissue failure, which is critical for computational models intended to predict injury at the tissue level. It is recommended that stresses and strains be included and retained for subsequent analysis when repositioning a human computational neck model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.