Abstract
The contribution of optical phonons to thermal conductivity has typically been ignored. However, when the system size decreases to the nanoscale regime, optical phonons are no longer negligible. In this study, the contributions of different phonon polarizations to the thermal conductivity of silicon are discussed based on the phonon lifetimes extracted from a first principles approach. The results indicate that around room temperature, optical phonons can contribute over 20% to the thermal conductivity of nanostructures as compared to 5% in bulk materials. In addition, the temperature and size dependence of the contributions from acoustic and optical phonons are fully explored.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.