Abstract

The use of an ultrasound probe or a needle guide during biopsy deforms both the rectal wall and the prostate, resulting in lesion motion. An accurate patient-specific finite element (FE)-based biomechanical model can be used to predict prostate deformations. In this study, an FE model of a prostate phantom is developed using magnetic resonance images, while soft-tissue elasticity is estimated in vivo using an ultrasound-based acoustic radiation force impulse imaging technique. This study confirms that three-dimensional FE-predicted prostate deformation is predominantly dependent on accurate modelling of prostate geometry and boundary conditions. Upon application of various compressive displacements, our results show that a linear elastic FE model can accurately predict prostate deformations. The maximum global error between FE-predicted simulations and experimental results is 0.76 mm. Moreover, the effect of including the urethra, puboprostatic ligament and urinary bladder on prostate deformations is investigated by a sensitivity study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.