Abstract

The latest results from LHC searches for jets in association with missing transverse energy place strong bounds on the scattering cross section of dark matter. For the case of spin-dependent or momentum suppressed interactions these limits seem to be superior to the bounds from direct detection experiments. In this article, we show that loop contributions can significantly alter this conclusion and boost direct detection bounds, whenever they induce spin-independent interactions. This effect is most striking for tensor and pseudotensor interactions, which induce magnetic and electric dipole moments at loop level. For axialvector and anapole interactions a relevant contribution to direct detection signals arises from loop-induced Yukawa-like couplings between dark matter and quarks. We furthermore compare the resulting bounds to additional constraints on these effective operators arising from indirect searches and relic density requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call