Abstract

Abstract. Organic nitrates are secondary species in the atmosphere. Their fate is related to the chemical transport of pollutants from polluted areas to more distant zones. While their gas-phase chemistry has been studied, their reactivity in condensed phases is far from being understood. However, these compounds represent an important fraction of organic matter in condensed phases. In particular, their partition to the aqueous phase may be especially important for oxidized organic nitrates for which water solubility increases with functionalization. This work has studied for the first time the aqueous-phase ⚫OH-oxidation kinetics of four alkyl nitrates (isopropyl nitrate, isobutyl nitrate, 1-pentyl nitrate, and isopentyl nitrate) and three functionalized organic nitrates (α-nitrooxyacetone, 1-nitrooxy-2-propanol, and isosorbide 5-mononitrate) by developing a novel and accurate competition kinetic method. Low reactivity was observed, with kOH ranging from 8×107 to 3.1×109 L mol−1 s−1 at 296±2 K. Using these results, a previously developed aqueous-phase structure–activity relationship (SAR) was extended, and the resulting parameters confirmed the extreme deactivating effect of the nitrate group, up to two adjacent carbon atoms. The achieved extended SAR was then used to determine the ⚫OH-oxidation rate constants of 49 organic nitrates, including hydroxy nitrates, ketonitrates, aldehyde nitrates, nitrooxy carboxylic acids, and more functionalized organic nitrates such as isoprene and terpene nitrates. Their multiphase atmospheric lifetimes towards ⚫OH oxidation were calculated using these rate constants, and they were compared to their gas-phase lifetimes. Large differences were observed, especially for polyfunctional organic nitrates: for 50 % of the proposed organic nitrates for which the ⚫OH reaction occurs mainly in the aqueous phase (more than 50 % of the overall removal), their ⚫OH-oxidation lifetimes increased by 20 % to 155 % under cloud/fog conditions (liquid water content LWC = 0.35 g m−3). In particular, for 83 % of the proposed terpene nitrates, the reactivity towards ⚫OH occurred mostly (>98 %) in the aqueous phase, while for 60 % of these terpene nitrates, their lifetimes increased by 25 % to 140 % compared to their gas-phase reactivity. We demonstrate that these effects are of importance under cloud/fog conditions but also under wet aerosol conditions, especially for the terpene nitrates. These results suggest that considering aqueous-phase ⚫OH-oxidation reactivity of biogenic nitrates is necessary to improve the predictions of their atmospheric fate.

Highlights

  • Nitrogen oxides (NOx = qNO + qNO2) intensely impact air quality and the environment as they play key roles in the production of relevant air pollutants such as ozone (O3), nitrous acid (HONO), nitric acid (HNO3), and secondary organic aerosol (SOA)

  • The method was applied to determine new qOH-oxidation kinetics of seven organic nitrates, which are compounds for which the aqueous-phase qOH-oxidation reaction was investigated for the first time

  • It was found that the nitrate group provokes an important deactivation of the qOH attack, similar to the corresponding gas-phase reactions but enhanced by solvent kinetic effects

Read more

Summary

Introduction

Nitrogen oxides (NOx = qNO + qNO2) intensely impact air quality and the environment as they play key roles in the production of relevant air pollutants such as ozone (O3), nitrous acid (HONO), nitric acid (HNO3), and secondary organic aerosol (SOA) Their atmospheric chemistry controls NthOe 3coq nracdeinctaralst.ioTnhseopfatshtefethwredeemcaadiensohxaivdeanwtsi,tnOe3ss, eqdOiHm,paonrdtant reductions in NOx direct emissions in Europe or North America, resulting in changes in their atmospheric fate, by Published by Copernicus Publications on behalf of the European Geosciences Union. González-Sánchez et al.: Atmospheric loss of organic nitrates by aqueous-phase qOH oxidation increasing the relative importance of their conversion to organic nitrates (Romer Present et al, 2020) The latter are secondary organic compounds, which are formed by the reactivity of NOx with volatile organic compounds (VOCs). For this reason, understanding and considering the reactivity of organic nitrates is necessary for accurately predicting their atmospheric fates and impacts on air quality

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call