Abstract

In this paper, which continues our investigation of strong singularity formation in compressible fluids, we consider the compressible three-dimensional Navier-Stokes and Euler equations. In a suitable regime of barotropic laws, we construct a set of finite energy smooth initial data for which the corresponding solutions to both equations implode (with infinite density) at a later time at a point, and completely describe the associated formation of singularity. An essential step in the proof is the existence of $\mathcal{C}^\infty$ smooth self-similar solutions to the compressible Euler equations for quantized values of the speed constructed in our companion paper (part I). All blow up dynamics obtained for the Navier-Stokes problem are of type II (non self-similar).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.