Abstract

Unreliable failure detectors were proposed by Chandra and Toueg as mechanisms that provide information about process failures. Chandra and Toueg defined eight classes of failure detectors, depending on how accurate this information is, and presented an algorithm implementing a failure detector of one of these classes in a partially synchronous system. This algorithm is based on all-to-all communication and periodically exchanges a number of messages that is quadratic on the number of processes. We study the implementability of different classes of failure detectors in several models of partial synchrony. We first show that no failure detector with perpetual accuracy (namely, P, Q, S, and W) can be implemented in these models in systems with even a single failure. We also show that, in these models of partial synchrony, it is necessary a majority of correct processes to implement a failure detector of the class /spl theta/ proposed by Aguilera et al. Then, we present a family of distributed algorithms that implement the four classes of unreliable failure detectors with eventual accuracy (namely, /spl diams/P, /spl diams/Q, /spl diams/S, and /spl diams/W). Our algorithms are based on a logical ring arrangement of the processes, which defines the monitoring and failure information propagation pattern. The resulting algorithms periodically exchange at most a linear number of messages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.