Abstract

Abstract In this article the implementation of anisotropic yield functions into finite element investigations of orthotropic sheets with planar anisotropy is discussed within a plane-stress context. Special attention is focused on the proper treatment of the orientation of the anisotropic axes during deformation into the finite-strain range. As an example problem the hydrostatic bulging of a membrane is considered in conjunction with a recently proposed anisotropic yield function. It is shown that the aspects of the plane-stress assumption, which do not come into consideration in isotropic analyses, can play an important role on the accuracy of the solution when the rotation of the orthotropic axes enters the computation directly due to the presence of material anisotropy. When the material anisotropy is considered and when the deformation of the workpiece is not limited to the plane of the undeformed sheet (such as cup drawing, hydrostatic bulging, etc.), the numerical experiments indicate that the only correct formulation is the one based on numerically imposing the requirement that for the plane-stress application, the in-plane material axes have to remain in the plane of the sheet during the deformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call