Abstract

An exact solution is developed for the problem of a spherical inclusion with an imperfectly bonded interface. The inclusion is assumed to have a uniform eigenstrain and a different elastic modulus tensor from that of the matrix. The displacement discontinuity at the interface is considered and a linear interfacial condition, which assumes that the displacement jump is proportional to the interfacial traction, is adopted. The elastic field induced by the uniform eigenstrain given in the imperfectly bonded inclusion is decomposed into three parts. The first part is prescribed by a uniform eigenstrain in a perfectly bonded spherical inclusion. The second part is formulated in terms of an equivalent nonuniform eigenstrain distributed over a perfectly bonded spherical inclusion which models the material mismatch between the inclusion and the matrix, while the third part is obtained in terms of an imaginary Somigliana dislocation field which models the interfacial sliding and normal separation. The exact form of the equivalent nonuniform eigenstrain and the imaginary Somigliana dislocation are fully determined using the equivalent inclusion method and the associated interfacial condition. The elastic fields are then obtained explicitly by means of the superposition principle. The resulting solution is then used to evaluate the average Eshelby tensor and the elastic strain energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.