Abstract
Deep decarbonization of power system operations requires the maximal utilization of available renewable resources. At distribution-level operations, however, grid operators can face numerous challenges in integrating renewables at scale owing to the inherent intermittence of renewable energy resources. These include phenomena such as voltage fluctuations, which are typically mitigated through control actuators such as on-load tap changers (OLTC) as well as energy storage devices, such as battery energy storage systems (BESS). On the one hand, high intermittence of the available renewable portfolio may require increasingly aggressive control of actuators, thereby accelerating the probability of equipment failure. On the other hand, integrating BESS operations and having a diverse renewable generation portfolio can typically help stagger power/energy flow to mitigate the aforementioned adverse impacts. In this paper, we employ a Bayesian framework for equipment lifetime estimation to understand the impact of including tidal energy resources and BESS in distribution system operations for feeders having substantial distribution photovoltaic generation. Our results indicate that while tidal energy alone may slightly decrease equipment reliability, the adverse impact on reliability is significantly magnified by a generation portfolio consisting of tidal generation and photovoltaic generation. We also study the tidal and photovoltaic hosting capacity problem with and without energy storage systems using equipment reliability as an added constraint. We conclude that energy storage increases the reliability-constrained hosting capacity of the distribution system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.