Abstract
In this report, the impact of different mesa designs on the optical and electrical characteristics for GaN-based micro-light emitting diodes (µLEDs) has been systematically and numerically investigated by using TCAD simulation tools. Our results show that an enhanced light extraction efficiency can be obtained by using beveled mesas. The inclined mesa angles can more effectively reflect the photons to the substrate, and this helps to extract the photons to free air for flip-chip µLEDs. However, it is found that the current injection is influenced by inclination angles for the investigated µLEDs, such that the beveled mesas make stronger charge-coupling effect and increase the electric field magnitude in the multiple quantum wells at the mesa edge, so that the carriers cannot be effective consumed by radiative recombination. As a result, this gives rise to stronger defect-induced nonradiative recombination at mesa surfaces. Therefore, there are tradeoffs between the LEEs and IQEs when changing the beveled angle, to maximize external quantum efficiency for GaN-based µLEDs, the beveled mesa angle shall be carefully designed and optimized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.