Abstract

Protein translocation across membranes is a fundamental cellular process. The majority of the proteins of organelles such as mitochondria and chloroplasts is synthesized in the cytosol and subsequently imported in a post-translational manner. The precursor proteins have to be unfolded at least for translocation, but it has also been assumed that they are unfolded during transport to the organelle in the cytosol. Unfolding is governed by chaperones and the translocon itself. At the same time, chaperones provide the energy for the import process. The energetic properties of the chloroplast translocon were studied by import of the Ig-like module of the muscle protein titin fused to the transit peptide of the chloroplast targeted oxygen evolving complex subunit of 33 kDa (OE33). Our results suggest that p(OE33)titin is folded prior to import and that translocation is initiated by unfolding after having bound to the translocon at the chloroplast surface. Using a set of stabilizing and destabilizing mutants of titin previously analyzed by atomic force microscopy and as passenger for mitochondrial translocation, we studied the unfolding force provided by the chloroplast translocon. Based on these results, a model for translocation is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.