Abstract

On several classes of n-person NTU games that have at least one Shapley NTU value, Aumann characterized this solution by six axioms: Non-emptiness, efficiency, unanimity, scale covariance, conditional additivity, and independence of irrelevant alternatives (IIA). Each of the first five axioms is logically independent of the remaining axioms, and the logical independence of IIA is an open problem. We show that for n = 2 the first five axioms already characterize the Shapley NTU value, provided that the class of games is not further restricted. Moreover, we present an example of a solution that satisfies the first five axioms and violates IIA for two-person NTU games (N, V) with uniformly p-smooth V(N).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.