Abstract

This work analyses the effect of the helium content on synthetic period–luminosity relations (PLRs) and period–Wesenheit relations (PWRs) of Cepheids and the systematic uncertainties on the derived distances that a hidden population of He-enhanced Cepheids may generate. We use new stellar and pulsation models to build a homogeneous and consistent framework to derive the Cepheid features. The Cepheid populations expected in synthetic colour–magnitude diagrams of young stellar systems (from 20 to 250 Myr) are computed in several photometric bands for Y = 0.25 and 0.35, at a fixed metallicity (Z = 0.008). The PLRs appear to be very similar in the two cases, with negligible effects (few per cent) on distances, while PWRs differ somewhat, with systematic uncertainties in deriving distances as high as ∼ 7 per cent at log P < 1.5. Statistical effects due to the number of variables used to determine the relations contribute to a distance systematic error of the order of few percent, with values decreasing from optical to near-infrared bands. The empirical PWRs derived from multiwavelength data sets for the Large Magellanic Cloud (LMC) is in a very good agreement with our theoretical PWRs obtained with a standard He content, supporting the evidence that LMC Cepheids do not show any He effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call