Abstract

This paper studies the opportunities of energy-accuracy tradeoff in cellular neural network (CNN). Algorithmic characteristics of CNN is coupled with hardware-induced error distribution of a digital CNN cell to evaluate energy-accuracy tradeoff for simple image processing tasks as well as a complex application. The analysis shows that errors modulate the cell dynamics and propagate through the network degrading the output quality and increasing the convergence time. The error propagation is determined by the task being performed by the CNN, specifically, the strength of the feedback template. Controlling precision is observed to be a more effective approach for energy-accuracy tradeoff in CNN than voltage over scaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.