Abstract

In this paper, we explore the impact of different forms of model abstraction and the role of discreteness on the dynamical behaviour of a simple model of gene regulation where a transcriptional repressor negatively regulates its own expression. We first investigate the relation between a minimal set of parameters and the system dynamics in a purely discrete stochastic framework, with the twofold purpose of providing an intuitive explanation of the different behavioural patterns exhibited and of identifying the main sources of noise. Then, we explore the effect of combining hybrid approaches and quasi-steady state approximations on model behaviour (and simulation time), to understand to what extent dynamics and quantitative features such as noise intensity can be preserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.