Abstract

Design of modern engineering products requires complexity management. Several methodologies for complex system optimization have been developed in response. Single-level strategies centralize decision-making authority, while multi-level strategies distribute the decision-making process. This article studies the impact of coupling strength on single-level Multidisciplinary Design Optimization formulations, particularly the Multidisciplinary Feasible (MDF) and Individual Disciplinary Feasible (IDF) formulations. The Fixed Point Iteration solution strategy is used to motivate the analysis. A new example problem with variable coupling strength is introduced, involving the design of a turbine blade and a fully analytic mathematical model. The example facilitates a clear illustration of MDF and IDF and provides an insightful comparison between these two formulations. Specifically, it is shown that MDF is sensitive to variations in coupling strength, while IDF is not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call