Abstract

ABSTRACT The search for exomoons in time-domain photometric data has to-date generally consisted of fitting transit models that are comprised of a planet hosting a single moon. This simple model has its advantages, but it may not be particularly representative, as most of the major moons in our Solar system are found in multimoon satellite systems. It is critical that we investigate, then, the impact of applying a single-moon model to systems containing multiple moons, as there is the possibility that utilizing an inaccurate or incomplete model could lead to erroneous conclusions about the system. To that end, in this work we produce a variety of realistic multimoon light curves, perform standard single-moon model selection, and analyse the impacts that this model choice may have on the search for exomoons. We find that the number of moons in a system fit with a single-moon model generally has little impact on whether we find evidence for a moon in that system, and other system attributes are individually not especially predictive. However, the model parameter solutions for the moon frequently do not match any real moon in the system, instead painting a picture of a ‘phantom’ moon. We find no evidence that multimoon systems yield corresponding multimodal posteriors. We also find a systematic tendency to overestimate planetary impact parameter and eccentricity, to derive unphysical moon densities, and to infer potentially unphysical limb darkening coefficients. These results will be important to keep in mind in future exomoon search programmes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call