Abstract

In this paper we investigate the image of the $l$-adic representation attached to the Tate module of an abelian variety defined over a number field. We consider simple abelian varieties of type III in the Albert classification. We compute the image of the $l$-adic and mod $l$ Galois representations and we prove the Mumford-Tate and Lang conjectures for a wide class of simple abelian varieties of type III.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.