Abstract

The binding of chloride ions to specific sites on the human hemoglobin molecule has well-known effects on the oxygen equilibrium and on the stability of the tetrameric structure. Several lines of evidence suggest that the oxygen-linked and the dissociation-linked chloride binding sites differ. Direct evidence for this difference has been obtained from the chloride dependence of the dimer-tetramer equilibrium of oxyhemoglobin modified with 4-isothiocyanatobenzenesulfonic acid, in which all the oxygen-linked chloride binding sites are blocked, or with 4-isothiocyanatobenzenesulfonamide, in which the linkage between chloride and oxygen is unperturbed. Thus, the chloride dependence of the dimer-tetramer assembly is unaffected by the chemical modification in both proteins and resembles that of unreacted hemoglobin. It is suggested that histidines α-103, α-122 and β-97 may constitute, at least in part, the dissociation-linked chloride binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.