Abstract
Let K be a commutative noetherian ring. It is proved that a representation of a finite group on a K-module of finite length or on a K-module of finite exponent has a finite basis for its identities. In particular, this implies an earlier result of Nguyen Hung Shon and the author stating that every representation of a finite group over a field is finitely based. The problem whether every representation of a finite group over a commutative noetherian ring is finitely based still remains open.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.