Abstract

Dinosaurs with fossilized filamentous integument structures are usually preserved in a highly flattened state. Several different feather types have been described on this basis, but the two-dimensional preservation of specimens during fossilization makes the identification of single feather structures difficult due to overlapping feather structures in vivo. Morphological comparison with the diversity of recent feather types is therefore absolutely vital to avoid misinterpretation. To simulate the preservation process, a cadaver of recent Carduelis spinus (European siskin) was flattened in a printing press. Afterwards, the structure of the plumage was compared with the morphology of a single body feather from the same specimen. In comparison with the single feather, the body plumage of the flattened bird looked rather filamentous. It was almost impossible to identify single structures, and in their place, various artefacts were produced. The investigation of plumage in a specimen of the Mesozoic bird Confuciusornis sanctus reveals similar structures. This indicates that flattening of specimens during fossilization amplifies the effect of overlapping among feathers and also causes a loss of morphological detail which can lead to misinterpretations. The results are discussed in connection with some dubious feather morphologies in recently described theropods and basal birds. Based on recent feather morphology, the structure of so-called proximal ribbon-like pennaceous feathers (PRPFs) found in many basal birds is reinterpreted. Furthermore, the morphology of a very similar-looking feather type found in the forelimb and tail of an early juvenile oviraptorosaur is discussed and diagnosed as the first feather generation growing out of the feather sheath. Thus, the whole plumage of this theropod might represent neoptile plumage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call